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Abstract. The adsorption of an atom with one valence electron on a metal surface 
and the field desorption of this atom are considered in this paper. A very simple on- 
electron model is shown to describe properly the general features of the processes 
considered. 

1. Introduction 

The problem of the adatom-metal surface electronic structure and their interaction 
has a long history. There have been various calculations of different complexity and 
precision (see, for example, [I-61). The ab ini t io  quantum mechanical calculations of 
the adatom-metal surface, especially in the case of an applied external electric field, 
are very complicated due to the complexity of the system, its low symmetry, the large 
number of competing interactions, and the non-linearity of the corresponding math- 
ematical problem. High-precision calculations are very time-consuming and therefore 
are rare for the system considered. For simpler calculations, it seem expedient to 
make, if possible, all the necessary approximations from the very beginning, when 
they are not obscured by complicated mathematical expressions, and to consider the 
result as a physical model. Not claiming high precision, such models may neverthe- 
less provide a reasonably good description of the system and can qualitatively explain 
various trends. In the present paper, we will consider a very simple model and will 
show that it enables us to describe the adsorption of a monovalent atom on a metal 
surface and the field desorption of it. 

2. The one-electron problem 

For the sake of simplicity we assume that the metal surface is the structureless z ,y  
plane, the z axis being directed into the vacuum. We will employ the adiabatic 
approximation, and will consider only the motion of the adatom perpendicular to the 
surface. So the X ,  Y coordinates of the adatom are equal to zero, the adatom-surface 
distance Z being the only adiabatic variable. Next, we will replace the many-electron 
metal-adatom problem by the problem for a single-valence electron moving in the given 
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effective field. We will consider all core electrons of the atom and all the electrons of 
the metal as the source of the field for the valence electron. So the electronic equation 
in the adiabatic approximation is 
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h ( r ,  Z)$(rlZ)  = E ( Z ) $ ( r l Z )  (1) 

h ( ~ ,  2) = -;A + Vat(? - Ze,) + Vmet(r). 
where 

(2) 

(Atomic units will be used throughout the paper.) In (2) Vat is the effective field 
potential of the atomic core and V,,, is the effective field potential of the metal and 
its surface. The adiabatic potential in this case is 

W ( 2 )  = E(Z) + U(Z) (3) 

where U(Z) is the interaction energy between the atomic core and the metal. 

3. The potential 

The effective field potential of the atomic core is evident. Assuming the core to be 
rigid, it is convenient to employ the semi-empirical model pseudopotential 

which is non-linear in the angular quantum number 1. In (4), R,  is the atomic core 
radius, P, is the projection operator onto the subspace of spherical harmonics with 
given I, and A,, A,, and y are adjustable parameters. The functional dependence on r 
in the I = 1 component was chosen to make the evaluation of matrix elements simple. 
The parameters are adjusted such that the energy of the electron in the potential 
Vat(r) coincides with the negative of the experimental values of the energy necessary 
to  remove a valence electron from the corresponding state in the atom t o  infinity. 

The effective field potential of the metal is less evident. Because we reduce the 
total problem to the one-electron one, the potential V,,,(r) cannot simply be the 
pseudopotential of atomic cores of the metal. It should also describe the influence 
(screening) of conduction electrons of the metal on one particular electron, which we 
consider to  be the valence electron originally belonging to the atom. The following 
considerations help us to  construct this potential. For the metal with surface we will 
use the jellium model with an appropriate value of the parameter r8, assuming the 
positive background to be uniform in the half-space with z < 0 and to be abruptly 
terminated at z = 0. When the valence electron is in the atomic region the disturbance 
of the metal by the neutral atom is small and we can neglect it. In this case, the 
potential of the metal seen by the valence electron is zero. If the valence electron 
is inside the metal, it should be at the Fermi level. Therefore the potential for the 
valence electron in the metal is a potential well with constant depth equal to  the 
negative of the work function. Next, if the valence electron is in the metal the atom 
becomes an ion and it induces charge in the metal. Because in the case considered 
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the induced charge in the semi-infinite metal is equal to  1, we will simply simulate the 
induced charge by the charge distribution of the valence electron. It is known [l] that 
the centre of mass of the induced charge is localized some distance z,, away from the 
positive background. Therefore we will take the following simple expression for the 
pseudopotential of the metal with surface 

'met(') = EFe(zO - ') (5) 

where 

and EF is the Fermi energy with respect to the vacuum level. The values of z,, 
for different r, can be found in [l]. The stepped form of this potential is a rather 
crude model approximation but it makes the model easy and still results in reasonable 
accuracy. 

4. The basis functions 

Though (1) is the equation for one electron, it is three-dimensional and we will solve 
it with the help of an expansion of the wavefunction into the Gaussian orbitals basis 
set 

is the Gaussian orbital (GO), N,(C) is the normalization factor, Y,, is the spherical 
function and R is the point of the orbital's localization. 

Several different groups of GO were used in  the present paper. 

(i) Group of 1s GO localized on the adatom. The number of orbitals and parameters 
Ck were chosen to make this group a representative basis for the valence electron 
wavefunction of the ground state of the isolated atom. 

(U) Group of 2p GO localized on the adatom. These orbitals are to account for 
the deformation of the atomic orbital due to the surface and the external field. These 
GO were found by considering a single atom. When a homogeneous electric field F is 
applied to the atom, the valence electron wavefunction in the first-order perturbation 
theory becomes a linear combination 

$ ( T )  = $,,(TI  + F X ( T )  (9)  

of the s-function of the ground state $,,(T) and the correction function X ( T )  which 
has p-symmetry. The correction function was calculated in first-order perturbation 
theory, the model pseudopotential (4) being considered as the unperturbed one. The 
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2p GO basis was constructed to be representative for the correction function. The 
calculated dipole polarizabilities of the atoms coincide to within a few percent with 
their experimental values. 

(iii) Group of Is GO localized at different points on the L axis between the adatom 
and the metal and in the subsurface region of the metal. The parameters C of these 
orbitals and the distances between localization points were chosen to provide a suffi- 
cient coverage of the region between the adatom and the metal. Usually C was in the 
range 0.07-0.10 and the distance was 2.0-2.5 au. 

(iv) A single diffuse 1s GO deep in the metal. 

The total number of GO was typically about 15. A further increase of the number 
of basis orbitals changes the results only insignificantly, so the basis used can he 
considered as a representative one. 
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5. The adatom core-metal interaction energy 

The interaction energy U(Z) between the metal and the core of the adatom consists of 
two parts. The first is the interaction between the atomic cores of the metal and that 
of the adatom and the second is the interaction between the conduction electrons and 
the adahom core. The first is purely a Coulomb repulsion, and if the adatom core is 
outside the positive background, the electrostatic interaction energy between the point 
charge and the positive background could be taken instead of this Coulomb repulsion. 
The second can be calculated with the help of the model pseudopotential (4) and the 
one-electron wavefunctions of the conduction electrons. To calculate it, it is necessary 
to know the wavefunctions of all conduction electrons. But if we approximately replace 
the nonlocal model pseudopotential (4) by the local one 

then not the individual wavefunctions, but only the total electronic density of conduc- 
tion electrons will be required [2]. For that we can take the well known expression [7] 

where po is the electron density in the bulk. Then for U(Z) in the region 2 > R,, 
we obtain 

U(Z) = U, ,-BZ (12) 

where 
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6. Homogeneous electric field 

In the case where the homogeneous electric field is applied to a metal with adatom, 
it is necessary to  make several changes to the model. First, the potential energy 
V,(Z) of the electron in the applied field should be added to the operator H(T,  Z)  in 
equation (2). This potential energy is equal to Fr for large positive z (vacuum) and 
it is equal to  zero for negative z (metal), because the conduction electrons screen it. 
In our simple model, we will neglect the region where the actual screening takes place 
and will assume that 

V&) = F r Q ( z ) .  (13) 

Second, the energy of ihe adatom core in the extemal field 

V ; ( Z ) = - F Z  z > o  (14) 

should be added to  the adiabatic potential W(Z) .  Third, in the calculation of V ( Z )  it 
is necessary to  employ p(z + &), the shifted density (11) of the conduction electrons, 
the shift Sr being adjusted to  reproduce the screening of the external electric field in 
the metal region. 

7. Results and discussion 

Calculations were performed for all the alkali adatoms and for hydrogen on jellium 
with vs chosen to correspond to tungsten. The adiabatic potential W ( Z )  was first 
calculated for the case with no external field present. As an example the adiabatic 
potential for lithium on tungsten is shown in figure 1. From this adiabatic potential, 
the equilibrium distance of the adatom from the surface, Z,, the adsorption energy, 
Ea and the iiequency w of the adatom vibration perpendicular to the surface were 
calculated. The results are given in table 1, where they are compared with other 
theoretical and experimental data. The calculated values of Z, and E, are in good 
agreement with other data. The values of w show the correct trend, but for H, Rb 
and Cs are too large by a factor of 2. 

Another characteristic of the metal-adatom system is the dipole moment, p. To 
calculate p it is necessary to know the electron density distribution of the system. 
The model under consideration employs the pseudo-potential method. This method 
produces correct energy and the pseudo-one-electron function $. To obtain the one- 
electron function one should orthogonalize $ to the adatom core one-electron functions 
and, most essentially, to  all metal one-electron functions. The latter were purposely 
excluded from the model to  make it simple. Hence we are left with the pseudo- 
density 1$)1’ only. As  an example, the ‘pseudo-density’ for lithium on tungsten at 
the equilibrium position of the adatom is shown in figure 1. The ‘pseudo-density’ 
shows some general features of the valence electron demity distribution, as can be 
seen from figure 1. Sometimes, depending on the physical system, orthogonalization 
results in only minor changes in the pseudo-one-electron function. In these cases the 
‘pseudedensity’ can reproduce the valence electron density with reasonable accuracy, 
so one can simply use the ‘pseudo-density’ instead of the real density. But for the 
systems considered in the present paper, the values of p calculated directly with the 
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Table 1. Adsorption parameterr and the value of the desorption for alkali a tom 
and hydrogen on tungsten. 

Adatom Li Ne K Rb C S  H 

E, (eV) 
Present work 2.35 2.4 2.9 3.4 36 2.6 
Other data 2.75. [SI 2.9. 191 2.9. [lo] 2.mb [3] 2.7b [3] 3Mb [I l l  

2.8' [I21 2.01. [lo] 3.3' [13] 2.27b [14] 
2.5-2.SS [I51 2.5b [E] 

3.10" [ I 1  

zo (4 
Present work 2.5 3.5 4.1 4.4 4.7 0.9 
Other data 2.65b [31 3.7b [3] 4.Sb [3] 5.Sb [3] 6.25b [3] l.0Sb [IS] 
ut (meV) 
Present work 40 25 18 12 10 230 
Other data 56b [3] 24.7b [3] 13.7b [3] gb [3] qb [3] 136b 1111 

14Sb [I41 
130" 1191 

kJ (D) 
Present work 8.0 10.0 10.0 9.4 8.6 0.63 
Olher data O.gb 131 2.4b [3] 3.gb [3] Sb 131 7-llb 131 0.17b [ll] 

3.5' [lo] 5 4 s  [lo] 6 - k  [IO] 0.14b 1141 
Fd (V A-') 
Present work 0.9 0.8 1 1 1 7 
Other data 0.8-1.0* [I51 0.7b 131 0.4b [31 0.3b [3] 5.6. [22] 

0.6. [lo] 0.4' [lo] 0.3' [lo] 3.85' [SI 
0.51 [ZO] 3.7Sb [23] 

a Experiment. 
Theory. 

t " lev' 

Figure 1. Li on tungsten at zero applied field. 
The adiabatic potential W(2)  (in eV) and the 
pseudwdensity along the Z axis in the quilib 
rium position of the adatom. 

Figure 2. Lion tungsten; the adiabatic paten- 
tial W(2)  for diRerent value of applied field F 
(in V A-'). 1: F = 0, 2: F = 0.2, 3: F = 0.4, 4: 
F = 0.6, 5: F = 0.8. 6: F = 0.95, 7: F = 1.1, 8: 
F = 1.4. 
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use of ‘pseud-density’ are correct only within the order of magnitude (see table 1). 
They are too large, indicating that the orthogonalization to the metal one-electron 
functions essentially reduces the walence electron deneity in the metal region, and as a 
result pushes its centre of gravity much closer to the adatom. Therefore in the model 
considered the pseudo-one-electron function ?I, is good for calculation of the energy 
values and not for other physical quantities, and the simple direct use of the ‘pseudo- 
density’ is justified for qualitative arguments only. To calculate the dipole moment 
fi  with the help of the obtained pseudo-one-electron function ?I, one should employ 
the full orthogonalization procedure first. This is a possible but tedious task which 
requires all the metal one-electron functions and goes against to the simplicity of the 
model. 

After the zero-applied-field case was examined, the adiabatic potential was cal- 
culated for several values of the applied electric field strength, F. This adiabatic 
potential shows a Shottky barrier if the field is not too strong. It can be seen, for 
example in figure 2, where the adiabatic potentials for the lithium on tungsten system 
are shown. The value of the field for which this barrier vanishes was taken to be the 
desorption field. Its calculated values are given in table 1. They are in reasonable 
agreement with other data. 

The calculated pseud-one-electron function t+h has a consistent behaviour when 
the metal-adatom distance increases. It shows that for small metal-adatom distances 
there is a charge partition between adatom and metal. For large metal-adatom dis- 
tances the charge resides fully in the adatom if there is no external electric field and 
fully in the metal if the external field is applied. The example is shown in figure 3 for 
the lithium-on-tungsten system. 

t 
5 10 15 z -’ Ilyl”’ 

* 
5 W 15 z 

, 1 .  z . 
5 10 15 z 5 15 

A, I z ;k1!i; / -_/h 
- 5  0 I I 10 I5 2 A -5  0 5 I 

I*? 

101 LbI 

Figure 3. Li on tungsten. The pseud-density alcng Z axis for diKerent positions 
of adatom shown by a broken Line; (a) zero applied field, (b) applied field 0.8 V A-’, 

All the data presented here confirm that the very simple model introduced can 
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describe the general features of adsorption and field desorption of an adatom on a 
metal surface. 
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